
Teaching Open Source

Ralph Bean

Oct 08, 2018

Contents

1 Syllabus 1
1.1 Projects Seminar in FLOSS Game Development . 1
1.2 Text Books . 1
1.3 Goals of the course . 2
1.4 The spirit of the course . 2
1.5 Licensing . 2
1.6 Schedule . 3
1.7 Required Reading . 3
1.8 Grading . 5
1.9 Lightning Talks - Extra Credit . 6

2 Notes for Class Sessions 7
2.1 Week 01, Day 1: First Flight . 7
2.2 Week 01, Day 2: Guided Bugfix . 7
2.3 Week 02, Day 1: Matching, Sorting, and Seeking . 7
2.4 Week 02, Day 2: Introduction to HTML5 . 8
2.5 Week 03, Day 1: Managing, Hitting, and Chaining . 8
2.6 Week 03, Day 2 . 9
2.7 Week 04, Day 1 . 9
2.8 Week 04, Day 2 - Paper prototypes . 9
2.9 Week 05, Day 1 - Settling on projects . 9
2.10 Week 05, Day 2 - Openshift . 10
2.11 Week 06, the Valley of the Shadow of Openshift . 10
2.12 Week 07, Day 1: TurboGears . 10
2.13 Week 07, Day 2: More TurboGears - AJAX - Back to the Cloud - Facebook 11
2.14 Week 08, Day 2: Facebook Auth . 12
2.15 Week 09, Day 1 . 12
2.16 Week 09, Day 2: Facebook Graph API . 12

3 Helpful Hints – A list of external resources 13
3.1 git . 13
3.2 vim . 13

4 README.rst – Tools for teaching the open source projects seminar @ RIT 15
4.1 Setting up your environment . 15
4.2 Building the “Documentation” . 16
4.3 Validating the data/students.yaml file . 16

i

5 Homework - First Flight 19
5.1 Fill out the survey . 19
5.2 IRC . 19
5.3 Mailman . 20
5.4 Blogging . 20
5.5 github . 21
5.6 Patch the Course Project . 21

6 Homework - Bugfix 23
6.1 Pick a Project . 23
6.2 Find a bug . 24
6.3 Use the Source, Luke . 24
6.4 The Deliverable . 25
6.5 An Afterthought (not required) . 25

7 HTML5 - Programming Assignment #1 27
7.1 Deliverable . 27
7.2 Optional - use a framework . 28

8 Homework - Rubric 29

9 HTML5 - Programming Assignment #2 31
9.1 Required technology overview . 31
9.2 Assignment . 31

ii

CHAPTER 1

Syllabus

1.1 Projects Seminar in FLOSS Game Development

• Syllabus - http://ritfloss.rtfd.org/ – (subject to change)

• Course Number - 4080.590.01

• Room - Orange Hall, Room 1380 (013-1380)

• Tuesday, Thursday – 10:00am-11:50am

• Instructor - Ralph Bean <rjbpop@rit.edu>

– Office: Building 17, Room 3110 (17-3110)

– Office Hours: Friday, 1:00pm-3:00pm

• IRC - irc.freenode.net, #floss-seminar

• Email list - floss-seminar@lists.rit.edu

• Blog Planet - http://threebean.org/floss-planet

• The source for this syllabus can be found at http://github.com/ralphbean/tos-rit-projects-seminar

1.2 Text Books

You can download the textbooks here.

1.2.1 Casual Game Design

Casual Game Design: Designing Play for the Gamer in ALL of Us.

1

http://ritfloss.rtfd.org/
mailto:rjbpop@rit.edu
https://lists.rit.edu/mailman/listinfo.cgi/floss-seminar
http://threebean.org/floss-planet
http://github.com/ralphbean/tos-rit-projects-seminar
http://www.amazon.com/Casual-Game-Design-Designing-Gamer/dp/0123749530

Teaching Open Source

1.2.2 Making Isometric Social Real-Time Games with HTML5, CSS3, and Javascript

Making Isometric Social Real-Time Games with HTML5, CSS3, and Javascript.

1.3 Goals of the course

Having taken this course, students should be able to:

• Demonstrate competence with modern FLOSS development tools and conventions (git, public forges, unit tests,
bug trackers, wikis, etc..).

• Demonstrate competence with modern web development technologies (HTML5, Javascript, CoffeeScript,
CSS3, etc..).

• Document their work progress, accomplishments, and pitfalls by way of weekly blog posts.

• Work with and contribute to existing open source projects.

• Build and manage a new project using open source tools.

• Deploy a web application to the cloud.

• Have a fun, open-source web-based game for their portfolio and/or to show off to their friends.

1.4 The spirit of the course

While still a course where you will receive a letter grade, the spirit of the course is intended to be both open and fun.
This is a seminar course, so an experimental approach will be taken.

An open course – students will have access to the ‘document source’ for the syllabus and grading rubric. While you
are reading the syllabus right now, as a student of the class you have a right to fork the upstream repository, make
modifications, and submit patches for review. Barring a troll festival, this can create a fun, dynamic environment in
which the course curriculum can develop by the very same mechanism being taught during the quarter (community-
driven).

A fun course – while the primary deliverable for the course is a working web-based game, we are going to subject the
course itself to gamification. Instead of grading students’ final projects individually, projects will be pitted against one
another through a scheme developed by the students themselves, called the final_project_rubric.

For example, one way this could work is through simple accumulation of weighted point values awarded for the
presence of certain features: a game that works in all modern browsers as well as on mobile devices gets +5 points, a
game that includes a velociraptor gets +3 points, etc. . .

1.5 Licensing

All code developed by students in the course must be licensed (by the student) under any one of the licenses approved
by the open source initiative.

Your code that you write is your code, with which you can do what you will; true. However, if you’re unwilling to
license code you write for an open source course with an open source license, you’re in the wrong course.

2 Chapter 1. Syllabus

http://www.amazon.com/Making-Isometric-Social-Real-Time-Javascript/dp/1449304753
http://rhcloud.com
http://github.com/ralphbean/tos-rit-projects-seminar
http://www.opensource.org/licenses/category
http://www.opensource.org/licenses/category

Teaching Open Source

1.6 Schedule

Week Day Topic Reading Assigned Due
1 1 Introductions, Syllabus,

Mailman, IRC, git, github
The Syl-
labus

Homework - First
Flight

2 Bugfix deep dive The Open
Source
Way

Homework - Bugfix

2 1 Casual Games: Matching,
Sorting, and Seeking

Casual -
Week 2

Homework - First Flight

2 Introduction to HTML5 Isometric -
Week 2

HTML5 - Program-
ming Assignment #1

3 1 Casual Games: Managing,
Hitting, and Chaining

Casual -
Week 3

2 Audio, WebWorkers, and
CoffeeScript

Isometric -
Week 3

Holiday Break
4 1 Pitch Session : Talk about

your game.
HTML5 - Programming As-
signment #1 Homework - Bug-
fix

2 Paper Prototypes : Lecture
and Build

5 1 Paper Prototypes : (con’t)
Project Decisions

Homework - Rubric

2 Server choices, Social APIs,
and le Cloud. (#openshift)

Isometric -
Week 4

HTML5 - Program-
ming Assignment #2

6 1 No class
2 Casual Games: Construct-

ing, Socializing, and Physics
Casual -
Week 4

Homework - Rubric

7 1 Digital Prototype : Build
2 Digital Prototype : Play

8 1 Digital Prototype : Report
and Revise

HTML5 - Programming As-
signment #2

2 Guest Lecture
9 1 Digital Prototype : Build

2 Digital Prototype : Report
and Revise

10 1 Play Testing/Development
2 Play Testing/Development

11 ? Final Presentations

1.7 Required Reading

1.7.1 The Syllabus

• You’re reading the syllabus right now. It is posted at http://ritfloss.rtfd.org/

1.6. Schedule 3

http://ritfloss.rtfd.org/

Teaching Open Source

1.7.2 The Open Source Way

• What they didn’t teach me in college

• How to Start Contributing to Open Source Projects

• Understanding Open Source Licensing

• Revitalizing Computing Education Through Free and Open Source Software

• Why Open Source Misses the Point of Free Software

1.7.3 Casual - Week 2

• casual

– chapters 1-6 (139 pages). It’s light reading, trust me.

1.7.4 Isometric - Week 2

• Making Isometric Social Real-Time Games with HTML5, CSS3, and Javascript

– chapters 1-3 (65 pages). This reading is not quite so light.

1.7.5 Casual - Week 3

• casual

– chapters 7-9 (36 pages)

1.7.6 Isometric - Week 3

• Making Isometric Social Real-Time Games with HTML5, CSS3, and Javascript

– chapter 4 (18 pages)

1.7.7 Casual - Week 4

• casual

– chapters 10-12 (56 pages)

1.7.8 Isometric - Week 4

• Making Isometric Social Real-Time Games with HTML5, CSS3, and Javascript

– chapter 5 (25 pages)

4 Chapter 1. Syllabus

http://ericholscher.com/blog/2009/nov/10/what-they-didnt-teach-me-college/
http://maymay.net/blog/2009/02/11/how-to-start-contributing-to-open-source-projects/
http://openacs.org/about/licensing/open-source-licensing
http://www.cs.trincoll.edu/~ram/pubs/CACM09-Morelli.pdf
http://www.gnu.org/philosophy/open-source-misses-the-point.html

Teaching Open Source

1.8 Grading

Assignments are due at midnight of the day they are marked as due.

Late submissions will be deducted 10% per day they are late.

Your final grade for the quarter will be derived from the following weights.

Component Weight
In-Class Participation 10%
FLOSS Dev Practices (Blogging, patching, writing, IRC) 15%
Homework Assignments 10%
Programming Assignments 15%
Paper Prototype 10%
Final Project 40%

Class partitipation is speaking in class, answering questions, etc. . .

Blog updates – students are required to keep a blog to which they post updates about their investigations, progress,
success, and pitfalls. This blog can be hosted anywhere, but must be added to the course planet (there are instructions
on how to do this in Homework - First Flight).

• You must make at least one blog post per week to receive full credit.

• You must participate regularly in the course’s IRC channel: asking and answering questions.

• You must participate in the course’s mailman list, floss-seminar@lists.rit.edu.

• Contributions to the course curriculum, syllabus, and rubric are factored in here as well.

Blogging is good for you and good for the FLOSS community at large.

The homework assignments are listed in the syllabus. You will be able to complete some of these in class.

Programming assignments are more in depth, but will amount to two deliverables derived from one of the course’s
two textbooks, Making Isometric Social Real-Time Games with HTML5, CSS3, and Javascript.

There are two assignments:

• HTML5 - Programming Assignment #1

• HTML5 - Programming Assignment #2

Students’ paper prototypes are presentations to the rest of the class on their idea for their game, before a single line of
code is written.

These are ‘play sessions’. You will need to bring some playable version of your game so we can all try it out. For
instance, if you’re thinking about a first-person-shooter, come with a set of rules for playing ‘pointing tag’ and we’ll
all really play it, in person.

The rest of the students will comment on your prototype. Take notes and:

1.8. Grading 5

http://threebean.org/floss-planet/
https://lists.rit.edu/mailman/listinfo.cgi/floss-seminar
http://xkcd.com/979/
http://www.amazon.com/Making-Isometric-Real-Time-JavaScript-ebook/dp/B005KOJ4DK/ref=dp_kinw_strp_1?ie=UTF8&m=AG56TWVU5XWC2

Teaching Open Source

• Use them to improve your design

• Turn in a copy for your grade

Your final project will be the culmination of the quarter’s work and will be graded according to the final_project_rubric.

Additionally, graduate students are expected to complete some extra work as described in hw/gradproj.

1.9 Lightning Talks - Extra Credit

Every Tuesday for the first portion of class, any student has the opportunity to give a lightning talk on a topic of their
chosing. Your lightning talk must be less than 5 minutes in length and must be at least remotely related to the course
material.

You will receive +1 extra credit points towards your final grade for every lightning talk you give. Only the first three
lightning talks offered will be allowed during a given class. Talks will be chosen from among those offered by students
on a FIFO basis.

6 Chapter 1. Syllabus

http://en.wikipedia.org/wiki/Lightning_Talk

CHAPTER 2

Notes for Class Sessions

2.1 Week 01, Day 1: First Flight

• Introductions

• Covering the Syllabus

• Homework - First Flight

2.2 Week 01, Day 2: Guided Bugfix

• Lightning Talks?

• Review last class (Homework - First Flight)

• Review Schedule (When are homeworks due, how are we with the reading schedule?)

• Guided Deepdive into pandas

• Talk about Homework - Bugfix

2.3 Week 02, Day 1: Matching, Sorting, and Seeking

• Graduate student proposals are due

• Homework - First Flight is due. How was it?

– Review http://threebean.org/floss-planet

• Slides - http://prezi.com/1qe6g-pvye_q/floss-games-matching-sorting-and-seeking/

7

http://github.com/wesm/pandas
http://threebean.org/floss-planet
http://prezi.com/1qe6g-pvye_q/floss-games-matching-sorting-and-seeking/

Teaching Open Source

2.4 Week 02, Day 2: Introduction to HTML5

• Lightning Talks

• Introduction to HTML5

– The book

* clone from github - https://github.com/ralphbean/Making-Isometric-Real-time-Games

* examples/ex2-fps-requestAnimationFrame.html

* examples/ex13-isogrid-buildings.html

* examples/ex14-gui.html

· Modernizr.js

– jQuery

– spritely

* Here’s the spritely source code

– DuckHunt

• Javascript Game Frameworks

– gameQuery - http://gamequery.onaluf.org/

– limeJS - http://badassjs.com/post/3200945950/limejs

– melonJS - http://www.melonjs.org/

– processingJS - http://processingjs.org/

– akihabara - http://www.kesiev.com/akihabara/

– effect - http://www.effectgames.com/effect/

• HTML5 - Programming Assignment #1

2.5 Week 03, Day 1: Managing, Hitting, and Chaining

• Managing

– Diner Dash http://www.playfirst.com/game/dinerdash

– Cake Mania http://www.bigfishgames.com/download-games/898/cakemania/index.html

– Insaniquarium http://www.popcap.com/games/insaniquarium/web

* Requires ActiveX

• Chaining

– Revisit,

* Diner Dash

* Insaniquarium

* Tetris

* Scrabble

• Hitting

8 Chapter 2. Notes for Class Sessions

https://github.com/ralphbean/Making-Isometric-Real-time-Games
http://www.modernizr.com/
http://jquery.com/
http://spritely.net/
https://gist.github.com/1447119
https://github.com/ralphbean/DuckHunt-JS
http://gamequery.onaluf.org/
http://badassjs.com/post/3200945950/limejs
http://www.melonjs.org/
http://processingjs.org/
http://www.kesiev.com/akihabara/
http://www.effectgames.com/effect/
http://www.playfirst.com/game/dinerdash
http://www.bigfishgames.com/download-games/898/cakemania/index.html
http://www.popcap.com/games/insaniquarium/web

Teaching Open Source

– Whac-a-mole vs Wii Tennis

2.6 Week 03, Day 2

Class was cancelled for the STEM/CSI hackathon!

2.7 Week 04, Day 1

• Welcome back from break.

• Homeworks due. How’d it go?

• Game Pitches

• <audio> tags

• WebWorkers

• CoffeeScript

– Online interpreter

– Observations

* Python style whitespacing

* Ruby styled lightweight syntax

* Concise function declarations

* JSLint approved

* Class based inheritance

* Comprehensions!

– Hangman

2.8 Week 04, Day 2 - Paper prototypes

• Paper prototypes

2.9 Week 05, Day 1 - Settling on projects

• Paper prototypes revisited.

• Decide on top three projects.

• Votes -

– How many per team?

* 2 teams of 6

* 3 teams of 4

2.6. Week 03, Day 2 9

http://coffeescript.org/#try:%23%20Assignment%3A%0Anumber%20%20%20%3D%2042%0Aopposite%20%3D%20true%0A%0A%23%20Conditions%3A%0Anumber%20%3D%20-42%20if%20opposite%0A%0A%23%20Functions%3A%0Asquare%20%3D%20(x)%20-%3E%20x%20*%20x%0A%0A%23%20Arrays%3A%0Alist%20%3D%20%5B1%2C%202%2C%203%2C%204%2C%205%5D%0A%0A%23%20Objects%3A%0Amath%20%3D%0A%20%20root%3A%20%20%20Math.sqrt%0A%20%20square%3A%20square%0A%20%20cube%3A%20%20%20(x)%20-%3E%20x%20*%20square%20x%0A%0A%23%20Splats%3A%0Arace%20%3D%20(winner%2C%20runners...)%20-%3E%0A%20%20print%20winner%2C%20runners%0A%0A%23%20Existence%3A%0Aalert%20%22I%20knew%20it!%22%20if%20elvis%3F%0A%0A%23%20Array%20comprehensions%3A%0Acubes%20%3D%20(math.cube%20num%20for%20num%20in%20list)%0A
https://github.com/ralphbean/hangman-coffee

Teaching Open Source

* 4 teams of 3

– Which games? Vote on the clipboard site.

* Rabenvald - Robocode++

* kaeedo - Eco

* PhilMoc - Haunted House

* JaceTwice - Arrangamajig

* Crystick - Gold Rush

* LakeEffect - Helicopter Race

* trose/decause - FOSS

* Lo-Rin - Dragonfire + Maths

* rossdylan - Pip3z!!1

* Qalthos - Myst

* Chips545 - Moar LaZ0rs

• Homework - Rubric assigned.

2.10 Week 05, Day 2 - Openshift

• Revisit last class

– Teams and Homework - Rubric

• Due homeworks

– Homework - Rubric due next Thursday.

– HTML5 - Programming Assignment #2 due the Tuesday after that.

• Class this coming Tuesday will be a working session on HTML5 - Programming Assignment #2.

• Walk through HTML5 - Programming Assignment #2

2.11 Week 06, the Valley of the Shadow of Openshift

:(

2.12 Week 07, Day 1: TurboGears

Setting up your environment (on typhon.csh.rit.edu):

$ virtualenv ~/myenv
$ source ~/myenv/bin/activate
$ pip install tg.devtools Pylons==1.0 WebOb==1.0.8
$ paster quickstart roflapp

Yes you prefer mako templates

(continues on next page)

10 Chapter 2. Notes for Class Sessions

https://clipboard.rit.edu/take.cfm?sid=77F39FB1

Teaching Open Source

(continued from previous page)

Yes you need authentication

$ cd roflapp

At present, the current release of TurboGears doesn’t know it, but it needs

• Pylons==1.0

• WebOb==1.0.8

$ python setup.py develop
$ paster setup-app development.ini

Since we’re on a shared machine typhon.csh.rit.edu, we’ll need to pick different ports to serve our respective
roflapps on. Edit development.ini accordingly.

Once you’ve made your edits, serve your app with:

$ paster serve --reload development.ini

2.12.1 Understanding Modern Web Frameworks

It’s all about MVC – model, view, controller. Modern frameworks separate your code out into these three distinct, yet
interdependant chunks.

• model (rolfapp/model/*.py) - contains all the database-related code

• view (roflapp/template/*.mak and roflapp/public/*) - contains all the presentation-related code,
html markup, css, javascript, etc.

• controller (roflapp/controllers/*.py) - all the control-logic (or business logic). Who can access what
urls? Validation of data? Did you win an iPad?

If you look inside roflapp you’ll see these directories and a few other secondary ones.

1. Add roflapp/public/testing123.html and browse to /testing123.html.

2. Edit roflapp/templates/index.html and browse to /.

3. Edit roflapp/controllers/root.py. Edit the def index(..) method to return a random number.
Display it in the template.

4. Look at roflapp/model/. Edit roflapp/controllers/root.py to return the number of users.

5. Throw an exception.

6. Use tg.flash().

2.13 Week 07, Day 2: More TurboGears - AJAX - Back to the Cloud -
Facebook

1. Edit roflapp/controllers/root.py.

1.1) Add one method that JSON returns info about users. 1.2) Add another method that JSON returns {‘success’:
True} but adds a new user

2.13. Week 07, Day 2: More TurboGears - AJAX - Back to the Cloud - Facebook 11

Teaching Open Source

2. Add roflapp/public/javascript/rofl.javascript.

1.1) Add one function that given JSON, updates the DOM. 1.2) Add one function that queries the /
query_users URL. 1.3) Add one function that POSTs to create a random user. 1.4) Add $(docu-
ment).ready(..) to kick it all off.

2.13.1 Facebook, if we have time

1. Look at hanginwit-threebean for the example. In particular, check out auth-fb.coffee.

2.14 Week 08, Day 2: Facebook Auth

External docs for Facebook:

• get an appID - https://developers.facebook.com/apps

• general docs on fb auth - http://developers.facebook.com/docs/authentication/

Modifications to your openshift app:

• tg2app/models/stuff.py - https://gist.github.com/1779952

• tg2app/controllers/root.py https://gist.github.com/1779931

• tg2app/templates/waiting.mak - https://gist.github.com/1780020

• tg2app/public/js/waiting.js - https://gist.github.com/1779989

• tg2app/lib/base.py - https://gist.github.com/1780206

• tg2app/templates/master.mak - https://gist.github.com/1780188

• tg2app/public/js/auth-faked.js - https://gist.github.com/1780093

• tg2app/public/js/auth-fb.js - https://gist.github.com/1780065

2.15 Week 09, Day 1

Presentations!

2.16 Week 09, Day 2: Facebook Graph API

• https://developers.facebook.com/tools/explorer

• http://developers.facebook.com/docs/reference/api/

• http://threebean.org/gitlog.html

12 Chapter 2. Notes for Class Sessions

http://github.com/ralphbean/hanginwit-threebean/
https://developers.facebook.com/apps
http://developers.facebook.com/docs/authentication/
https://gist.github.com/1779952
https://gist.github.com/1779931
https://gist.github.com/1780020
https://gist.github.com/1779989
https://gist.github.com/1780206
https://gist.github.com/1780188
https://gist.github.com/1780093
https://gist.github.com/1780065
https://developers.facebook.com/tools/explorer
http://developers.facebook.com/docs/reference/api/
http://threebean.org/gitlog.html

CHAPTER 3

Helpful Hints – A list of external resources

3.1 git

• git cheat sheet

3.2 vim

• vim cheat sheet

13

http://zrusin.blogspot.com/2007/09/git-cheat-sheet.html
http://www.viemu.com/vi-vim-cheat-sheet.gif

Teaching Open Source

14 Chapter 3. Helpful Hints – A list of external resources

CHAPTER 4

README.rst – Tools for teaching the open source projects seminar @ RIT

This is an all-purpose repository for storing some content, but mostly tools for teaching the open source projects
seminar @ RIT.

Future tools could include things like scripts to produce blog/commit/unittest statistics. This is also a place the syllabus
could live, where students could fork and produce pull requests.

4.1 Setting up your environment

Before you can do anything with this (build the documentation or run any of the scripts) you’ll need to setup and
activate a python virtualenv. Run the following at the command prompt. . .

4.1.1 On Linux/Mac OS X

$ virtualenv --no-site-packages -p python2 sphinxenv
$ source sphinxenv/bin/activate
$ git clone git@github.com:YOUR_USERNAME/tos-rit-projects-seminar.git
$ cd tos-rit-projects-seminar
$ python setup.py develop

4.1.2 On Windows

At the windows command prompt:

$ virtualenv --no-site-packages -p python2 sphinxenv
$ sphinxenv/Scripts/activate.bat

In msysGit or git-bash:

15

http://pypi.python.org/pypi/virtualenv

Teaching Open Source

$ git clone git@github.com:YOUR_USERNAME/tos-rit-projects-seminar.git

Back in the windows command prompt:

$ cd tos-rit-projects-seminar
$ python setup.py develop

4.2 Building the “Documentation”

The “documentation” for the course (the syllabus, all the homework assignments, notes on the lectures) are all kept
in the doc/ directory of this repository. The files all end with the extension .rst which is the file extension for
the reStructuredText markup language. They are all furthermore tied together by the sphinx framework for building
integrated docs.

You might notice that the syllabus, et. al. is hosted on http://readthedocs.org/. The upstream github repository has a
hook installed that automatically triggers a git pull at http://readthedocs.org from http://github.com. Thus, every
time we change the docs here, they are automatically re-built into HTML for us and posted online. Awesome!

This however means that we should be careful before we push anything to github, or it will ‘go live’. To be careful,
you should rebuild the documentation locally (on your machine) to check that whatever modifications you made to the
.rst files actually renders into the HTML that you want.

In order to do that, first make sure you have your virtualenv activated.

Being certain of that, in the root directory, simply run:

$ sphinx-build -b html doc html-output

The html documentation will be generated in html-output/. Check html-output/html/index.html to
see if it exists.

Note: If your machine complains that ‘sphinx-build’ is a command that could not be found, try running “$ python
setup.py develop” in the root of the tos-rit-projects-seminar repository first. That setup.py file contains information
about all other open source projects that are required for this project, and will automatically install them from http:
//pypi.python.org/

4.3 Validating the data/students.yaml file

The data/students.yaml file is a structured data file that keeps track of all the students in the class and metadata
about them. Using this file and the bindings in lib/ritfloss/model/students.py we can build scripts that
count how many lines of code each student modifies each week, or how many words/blogpost, or whatever we like.

The data format (YAML) can be a little prickly though. It is whitespace-sensitive, meaning that how many spaces you
put before an entry on each line has an impact on how the data is interpreted. It also means that tabs and spaces are
distinctly different in their meaning. It also means that editing such a file is easy to mess up.

In order to ensure that you don’t introduce any unparseable errors into the file, there is a script in lib/ritfloss/
model/validate.py that reads in the file and checks each entry. You should run it after every time you edit
data/students.yaml.

In order to run the validate.py script, make sure you have your virtualenv activated.

In the root of the cloned source directory, run:

16 Chapter 4. README.rst – Tools for teaching the open source projects seminar @ RIT

http://sphinx.pocoo.org/rest.html
http://readthedocs.org/
http://github.com/ralphbean/tos-rit-projects-seminar
http://readthedocs.org
http://github.com
http://pypi.python.org/
http://pypi.python.org/
http://www.yaml.org/

Teaching Open Source

$ python lib/ritfloss/model/validate.py

4.3. Validating the data/students.yaml file 17

Teaching Open Source

18 Chapter 4. README.rst – Tools for teaching the open source projects seminar @ RIT

CHAPTER 5

Homework - First Flight

The purpose of this homework assignment is to introduce students to their first FLOSS practices. Read it in full, there
are a number of graded deliverables.

The due-date is listed in the Syllabus.

5.1 Fill out the survey

Tasks:

• Your first task is to fill out the survey located here: https://clipboard.rit.edu/take.cfm?sid=E958FABE

It’s anonymous, but the results will be published back to the whole class so we have a feel for the technical level and
preferences coming into the course.

5.2 IRC

IRC is one of the primary means of communication for a FLOSS community, particularly for informal communication.

There is a course IRC channel on irc.freenode.net. The channel is #floss-seminar. Communicating
regularly in IRC factors into the FLOSS Dev Practices component of your final grade.

Tasks:

• Download and install an IRC client on your development machine.

– Windows: mIRC

– Mac OS X: Colloquy

– Linux: irssi

• Choose a nick and register yourself with the NickServ.

• Connect to #floss-seminar on irc.freenode.net and introduce yourself.

19

https://clipboard.rit.edu/take.cfm?sid=E958FABE
http://en.wikipedia.org/wiki/Internet_Relay_Chat
http://en.wikipedia.org/wiki/Free_and_open_source_software
http://www.mirc.com/
http://colloquy.info/
http://irssi.org/
http://freenode.net/faq.shtml#userregistration

Teaching Open Source

– The instructor’s nick is threebean.

It is a good practice to “hang out” in IRC channels of projects that you use and especially of projects that you contribute
to. Here you can find early alerts regarding any upcoming major changes or security vulnerabilities. It is also the easiest
(lowest overhead) method for getting your questions answered.

Note: Only for the brave – if you want to be completely awesome, you can setup a proxy node so you are always
logged in. People can leave you messages this way.

If you want to be completely completely awesome, you can setup BitlBee so you can tweet from your IRC client.

5.3 Mailman

Discussion mailing lists are a more formal mechanism of communication for FLOSS projects. More formal than IRC,
less formal than bug trackers. Discussion mailing lists are often used to ask questions, announce upcoming releases
and beta tests, and to debate redesigns and refactors. The advantage here is that mailing lists are typically archived
and indexed by Google; discussions that should be preserved for posterity should occur here.

There is a GNU Mailman discussion list for the course hosted by RIT.

Tasks:

• Subscribe to it at https://lists.rit.edu/mailman/listinfo.cgi/floss-seminar

• Write your first email to floss-seminar@lists.rit.edu, introducing yourself. Include your name, major,
hometown, and favorite color.

Communicating regularly over the course mailman list (asking and/or answering questions) factors into the FLOSS
Dev Practices component of your final grade.

5.4 Blogging

Setup a blog if you don’t have one. Much like mailing lists, blogs are archived, indexed by Google, and therefore
preserved for posterity. When you encounter a technical challenge, typically you google for a solution and you
typically find that solution in a blog post of some developer who has run into a similar situation. Blogging about your
attempts, successes and failures (and writing tutorials!) is a best practice for increasing the general body of searchable
knowledge available, for increasing the Wisdom of the Ancients.

Blogs around a topic are also typically aggregated by a planet (an RSS feed aggregator). This way, all developers
blogging about Project X can have their blog posts fast-tracked to a readership subscribed to Planet X. For
instance, here’s a link to Planet Python.

The Planet for the course is hosted at http://threebean.org/floss-planet/. There are instructions for how to subscribe
your blog to it in the Patch the Course Project section below.

You must create a blog (if you don’t have one already) and write at least one post per week about your progress,
attempts, successes, failures, reflections, and/or all of the above.

Tasks:

• Create a blog if you don’t already have one. There are lots of free services available. You might try
http://wordpress.com or http://blogspot.com.

• Write an introductory post relevant to the course. The topic is your choice!

20 Chapter 5. Homework - First Flight

http://www.bitlbee.org/main.php/news.r.html
http://en.wikipedia.org/wiki/Electronic_mailing_list
http://en.wikipedia.org/wiki/GNU_Mailman
https://lists.rit.edu/mailman/listinfo.cgi/floss-seminar
mailto:floss-seminar@lists.rit.edu
http://xkcd.com/979/
http://en.wikipedia.org/wiki/Planet_(software)
http://planet.python.org/
http://threebean.org/floss-planet/
http://wordpress.com
http://blogspot.com

Teaching Open Source

5.5 github

Code forges are service sites around which FLOSS development orbits, some of the more popular sites are github,
bitbucket, sourceforge, and launchpad.

For your own enlightenment, review the following comparisons of the different forges:

• Timeline

• Metadata

• Artifacts

• Features

• Revision control

• Policies

You’ll need to create your own account on github.com. All development for this course should be tracked on that
forge. Github is, after all, the most popular forge.

Tasks:

• Create a github account if you don’t already have one.

5.6 Patch the Course Project

Check out the source repository for this course; it’s hosted at https://github.com/ralphbean/tos-rit-projects-seminar.

Inside the repository, we’ll keep an index of all the students in the course and metadata about them (you!).

Tasks:

• Load up the git cheatsheet listed at Helpful Hints – A list of external resources and keep it nearby.

• Work through this git tutorial if you don’t have any experience with git.

• Fork the repository (link to github help on this).

• Clone a local copy.

• Follow the instructions in README.rst to setup your environment.

• Edit the file data/students.yaml. Perhaps obviously, it is a YAML file. Add yourself to the file with
the necessary keywords.

• Verify that you added yourself correctly by running the script located at lib/ritfloss/model/
validate.py

• Edit the file planet/config.ini. Look at the very bottom of the file and there will be the beginnings
of a list of subscribed blogs. Add your blog’s RSS feed (or a topical sub-feed) to this list. Make sure its a
working RSS URL! (Once the patch is accepted upstream and pushed to production, this should add your
blog feed to the course planet.)

• If everything checks out, then

– Commit your change

– Push to your github repository

– Issue a pull request through the web interface.

5.5. github 21

http://github.com
http://bitbucket.org
http://sourceforge.net/
https://launchpad.net/
http://flossmole.org/content/when-were-forges-established
http://flossmole.org/content/project-metadata-matrix-june-2011
http://flossmole.org/content/artifacts-matrix-code-forges-june-2011
http://flossmole.org/content/feature-matrix-code-forges-june-2011
http://flossmole.org/content/revision-control-matrix-june-2011
http://flossmole.org/content/forge-policy-matrix-june-2011
https://github.com/blog/865-github-dominates-the-forges
http://github.com
https://github.com/ralphbean/tos-rit-projects-seminar
http://gitimmersion.com/index.html
https://github.com/ralphbean/tos-rit-projects-seminar
http://help.github.com/fork-a-repo/
http://www.yaml.org/
http://threebean.org/floss-planet/

Teaching Open Source

22 Chapter 5. Homework - First Flight

CHAPTER 6

Homework - Bugfix

Real learning in computing comes more from doing and less from studying. Debugging, figuring out how some
software works and how it doesn’t, is an interactive process that develops basic engineering practices and, in the open
source context, community engagement and collaboration.

6.1 Pick a Project

You can choose any project you like. The best to pick is something you already use, something with which you’re
already familiar. If you can’t think of any projects to investigate off the top of your head, here’s a list of suggestions.

• The Battle for Wesnoth

• js.io

• The Linux Kernel (bugzilla is down, you could try looking here

• liveusb-creator

• The Mozilla Project

• node.js

• pandas, a data manipulation library

• Pyramid (web framework)

• Toscawidgets 2 (web widgets)

• Turbogears 2 (web framework)

• The Ur-Quan Masters

• The ManaWorld MMORPG for Linux

A little more focused, here is a list of open source javascript/html5 game engines and links to their bug trackers.

• gameQuery

• limeJS

23

http://www.wesnoth.org/
https://github.com/gameclosure/js.io
http://comments.gmane.org/gmane.linux.kernel/1209650
https://bugzilla.redhat.com/enter_bug.cgi?product=Fedora&version=rawhide&component=kernel
https://fedorahosted.org/liveusb-creator/
https://bugzilla.mozilla.org/
http://nodejs.org/
http://github.com/wesm/pandas
http://docs.pylonsproject.org/
http://tw2core.readthedocs.org/en/latest/index.html
http://turbogears.org/
http://sc2.sourceforge.net/
http://mantis.themanaworld.org/my_view_page.php
https://github.com/onaluf/gameQuery/issues
https://github.com/digitalfruit/limejs/issues

Teaching Open Source

• melonJS

• akihabara

• effect

You might also find something neat over at bounty sites like:

• Gun.io http://gun.io/

Really, the sky is the limit here.

Note: For background, you might want to also check out the project on http://ohloh.net/. It can help you characterize
what kind of community orbits around your choice.

6.2 Find a bug

A bug can be anything: an unintended side-effect in a low-level routine, a user-interface cleanup, a feature enhance-
ment, grammatical errors or lack of clarity in the project’s documentation.

Broadly, you have two different options here. You can

• Find a known bug (or feature enhancement) listed in the project’s bug tracker.

• Find a bug yourself by using the software.

In the event of the second case, make sure you file the bug in the project’s tracker before proceeding.

6.2.1 OpenHatch.org

OpenHatch.org bills itself as an “Open source Involvement Engine.” It’s mission is explicitly to reach out to commu-
nities of developers just like the one in this very course, and make it trivial for new contributors to effectively cycle on
upstream projects!

You can read more about OpenHatch and it’s vision here on their wiki

For this homework assignment, you should check out:

• OpenHatch, particularly

• The OpenHatch Volunteer Opportunity Finder for Bite-sized Bugs

• If you want all the bugs, you can find them through OpenHatch’s Search

6.3 Use the Source, Luke

Once you’ve identified a bug that needs fixing, you’ll need to get ahold of the source. In most cases, the code for a
project will be hosted on a forge and the process of forking and cloning the source will be straightforward. If you
forget how to do this for github, you can refer to Homework - First Flight.

For whatever project you’ve chosen, you should ask that project’s community for help. Look for IRC channels and
project mailing lists. You’ll be communicating with developers who have a lot on their plate so make sure to be polite
and leave your ego at the door.

Find the code related to the bug; use whatever code navigation tools you’re more familiar with. The instructor’s
favorite method is: grep -inr "some string" project_src/.

24 Chapter 6. Homework - Bugfix

https://github.com/obiot/melonJS/issues
https://github.com/kesiev/akihabara/issues
https://github.com/jhuckaby/Effect-Games/issues
http://gun.io/
http://ohloh.net/
https://openhatch.org/wiki/About_OpenHatch
http://openhatch.org
http://openhatch.org/search/?toughness=bitesize
http://openhatch.org/search
http://github.com
http://maymay.net/blog/2009/02/11/how-to-start-contributing-to-open-source-projects/
http://maymay.net/blog/2009/02/11/how-to-start-contributing-to-open-source-projects/

Teaching Open Source

Fix the bug, this may require some thinking, and some more asking around.

Test your fix! Project maintainers hate nothing more than receiving a patch that breaks every other function of the
project. Often, projects have built-in test suites. If yours does, run it!

Prepare your patch with descriptive commit messages. Follow the method for submitting patches recommended by
your project and submit!

Make sure the project community can easily understand what you did and why you did it.

Make sure there is a reference in the tracked bug ticket to your patch (that is, if the project maintains a bug tracker).

6.4 The Deliverable

Write a blog post about this process and provide relevant links where possible to documentation.

• A link to the patch(es) hosted somewhere on the web, usually forges provide the ability to link to changesets.

• A link to any mailing list discussions archived on the web

• Snippets of any relevant IRC conversations.

You will be graded on your post and the explanation of your process. Extra kudos (but not extra credit) for super epic
patches.

6.5 An Afterthought (not required)

Once your patch has been accepted, mosey on over to http://ohloh.net.

• Create an account

• Find the project you patched

– If it doesn’t exist, you can add it yourself

• “Claim your position” as the author of the commit(s) you sent in to increase your rank among open source
developers of the world!

6.4. The Deliverable 25

http://ohloh.net

Teaching Open Source

26 Chapter 6. Homework - Bugfix

CHAPTER 7

HTML5 - Programming Assignment #1

For this assignment you’ll be combining examples 13 and 14 from the book into a tech demo (still not actually a
game).

• Example 13

• Example 14

While they are both good examples that demonstrate some of the basic features of the <canvas> element and its 2d
context, they suffer from a few deficincies. Fix these as you rewrite and combine them. Do as you see fit, you’ll be
expanding on these examples for the second homework (HTML5 - Programming Assignment #2), so better to code
well now than suffer through bad code later.

Use FLOSS development practices while working on this. From the start, keep your code in a git repository linked to
github. “Commit early and commit often.” You’ll need to create a new repository on github for this.

As far as combining the examples goes, your demo will need to feature the ability to:

• Place and destroy buildings.

As far as fixing up deficiencies, you need to:

• Move all javascript out of the <script> tags and into its own .js files. Your main page can still have one or
two javascript make calls to initialize your demo.

• Convert the code from a half-procedural/half-object-oriented pattern to be fully object-oriented. You should
have differenet objects here and not just cram everything into the Game object from example 14.

• Replace the event handling and listening with jQuery.

• Replace the style attribute manipulation on DOM elements outside the <canvas> element also with jQuery.

– For example, the lines where they set className = null and use .setAttribute(...) are so
five years ago.

7.1 Deliverable

Write a blog post explaining what changes you made and why you made them.

27

https://github.com/ralphbean/Making-Isometric-Real-time-Games/blob/master/examples/ex13-isogrid-buildings.html
https://github.com/ralphbean/Making-Isometric-Real-time-Games/blob/master/examples/ex14-gui.html
http://jquery.com/
http://jquery.com/

Teaching Open Source

Simply include a link to your github repository for proof of your work.

7.2 Optional - use a framework

You may, if you like, move ahead and use a javascript game framework instead of jQuery and the examples from the
book. Your project will need to have the same functionality as if it were composed of the two examples, but this will
require a larger rewrite (although with much cleaner, denser code). Definitely make note of this in your blogpost if
you choose this route.

Here are some examples of frameworks you could use:

• gameQuery - http://gamequery.onaluf.org/

• limeJS - http://badassjs.com/post/3200945950/limejs

• melonJS - http://www.melonjs.org/

• processingJS - http://processingjs.org/

• akihabara - http://www.kesiev.com/akihabara/

• effect - http://www.effectgames.com/effect/

28 Chapter 7. HTML5 - Programming Assignment #1

http://gamequery.onaluf.org/
http://badassjs.com/post/3200945950/limejs
http://www.melonjs.org/
http://processingjs.org/
http://www.kesiev.com/akihabara/
http://www.effectgames.com/effect/

CHAPTER 8

Homework - Rubric

An excerpt from Syllabus:

An open course – students will have access to the ‘document source’ for the syllabus and grading rubric.
While you are reading the syllabus right now, as a student of the class you have a right to fork the upstream
repository, make modifications, and submit patches for review. Barring a troll festival, this can create a
fun, dynamic environment in which the course curriculum can develop by the very same mechanism being
taught during the quarter (community-driven).

A fun course – while the primary deliverable for the course is a working web-based game, we are going to
subject the course itself to gamification. Instead of grading students’ final projects individually, projects
will be pitted against one another through a scheme developed by the students themselves, called the
../final_project_rubric.

Part of the experience of being an open source developer is the instrinsic motivation that drives you to build open
software. That motivation can be different for each person. Its not something that is ever taught and is difficult to
develop into a course curriculum for sure!

Your assignment here is to take part in creating ../final_project_rubric.

You should have divided up into your teams for the final project by this point. Do the following with your github
accounts to setup both for the final project and for this homework:

• Designate one person from your team whose github account will be the primary account for your team. The
primary designee will be responsible for merging pull requests from their teammates both for the final project
and for this homework.

• All other members of your team should:

– Delete their tos-rit-projects-seminar repositories on github.

– Fork the tos-rit-projects-seminar repo from their team’s primary account (the designee’s ac-
count).

You will be responsible in this homework for forking your team’s repo as described above, committing patches to the
document (../final_project_rubric), pushing to your own github repo and issuing pull requests. You may add to the
document as well as delete from it.

29

http://github.com/ralphbean/tos-rit-projects-seminar
http://github.com/ralphbean/tos-rit-projects-seminar

Teaching Open Source

Although open source development is typically thought of as a cooperative mode of production, some participants
derive their motivation from a competitive outlook towards their peer developers. As an experiment, you will all be
graded in competition with one another for this assignment.

• There are 100 possible points.

• The student with the highest impact will receive 100 points.

• All other students who contribute patches will receive a weighted grade between 100 and 75 points based on
their impact.

• Students who submit no patches will receive 0 points.

Your impact is defined as the number of lines added + the number of lines deleted. You can see a graph of your impact
so far here.

Good luck! And make an awesome rubric worthy of awesome projects!

30 Chapter 8. Homework - Rubric

https://github.com/ralphbean/tos-rit-projects-seminar/graphs/impact

CHAPTER 9

HTML5 - Programming Assignment #2

9.1 Required technology overview

• Take a look at openshift rhc tools.

– Create an openshift account.

– Install them using these instructions.

* Follow only steps 1 and 2.

• Take a look at lmacken’s openshift-quickstarter

– Use it to create your first app.

• Take a look at the Facebook API.

– Register your site.

– Use the API to auth against your app, get friends lists.

9.2 Assignment

For this you’ll be taking your product from HTML5 - Programming Assignment #1, hosting it on the cloud, and
connecting it to Facebook authentication.

Requirements:

• Your app must be hosted on http://YOURAPP-YOURDOMAIN.rhcloud.com

• All client-side code must be written in coffee-script.

• Users must login with their Facebook account.

• Whatever map they work on must be saved to a database.

• Whatever map they were working on must be re-loaded once they login.

31

https://openshift.redhat.com/app/express#quickstart
https://github.com/lmacken/openshift-quickstarter
http://developers.facebook.com/docs/guides/web/#login
https://developers.facebook.com/apps/
http://YOURAPP-YOURDOMAIN.rhcloud.com

Teaching Open Source

Extra Credit

• Share maps with other users on Facebook

Deliverable

• Write a blog post including a link to your game and its source on http://github.com

32 Chapter 9. HTML5 - Programming Assignment #2

http://github.com

	Syllabus
	Projects Seminar in FLOSS Game Development
	Text Books
	Goals of the course
	The spirit of the course
	Licensing
	Schedule
	Required Reading
	Grading
	Lightning Talks - Extra Credit

	Notes for Class Sessions
	Week 01, Day 1: First Flight
	Week 01, Day 2: Guided Bugfix
	Week 02, Day 1: Matching, Sorting, and Seeking
	Week 02, Day 2: Introduction to HTML5
	Week 03, Day 1: Managing, Hitting, and Chaining
	Week 03, Day 2
	Week 04, Day 1
	Week 04, Day 2 - Paper prototypes
	Week 05, Day 1 - Settling on projects
	Week 05, Day 2 - Openshift
	Week 06, the Valley of the Shadow of Openshift
	Week 07, Day 1: TurboGears
	Week 07, Day 2: More TurboGears - AJAX - Back to the Cloud - Facebook
	Week 08, Day 2: Facebook Auth
	Week 09, Day 1
	Week 09, Day 2: Facebook Graph API

	Helpful Hints – A list of external resources
	git
	vim

	README.rst – Tools for teaching the open source projects seminar @ RIT
	Setting up your environment
	Building the “Documentation”
	Validating the data/students.yaml file

	Homework - First Flight
	Fill out the survey
	IRC
	Mailman
	Blogging
	github
	Patch the Course Project

	Homework - Bugfix
	Pick a Project
	Find a bug
	Use the Source, Luke
	The Deliverable
	An Afterthought (not required)

	HTML5 - Programming Assignment #1
	Deliverable
	Optional - use a framework

	Homework - Rubric
	HTML5 - Programming Assignment #2
	Required technology overview
	Assignment

