

Teaching Open Source @ RIT – Projects Seminar

	Syllabus
	Projects Seminar in FLOSS Game Development

	Text Books

	Goals of the course

	The spirit of the course

	Licensing

	Schedule

	Required Reading

	Grading

	Lightning Talks - Extra Credit

	Notes for Class Sessions
	Week 01, Day 1: First Flight

	Week 01, Day 2: Guided Bugfix

	Week 02, Day 1: Matching, Sorting, and Seeking

	Week 02, Day 2: Introduction to HTML5

	Week 03, Day 1: Managing, Hitting, and Chaining

	Week 03, Day 2

	Week 04, Day 1

	Week 04, Day 2 - Paper prototypes

	Week 05, Day 1 - Settling on projects

	Week 05, Day 2 - Openshift

	Week 06, the Valley of the Shadow of Openshift

	Week 07, Day 1: TurboGears

	Week 07, Day 2: More TurboGears - AJAX - Back to the Cloud - Facebook

	Week 08, Day 2: Facebook Auth

	Week 09, Day 1

	Week 09, Day 2: Facebook Graph API

	Helpful Hints – A list of external resources
	git

	vim

	README.rst – Tools for teaching the open source projects seminar @ RIT
	Setting up your environment

	Building the “Documentation”

	Validating the data/students.yaml file

	Homework - First Flight
	Fill out the survey

	IRC

	Mailman

	Blogging

	github

	Patch the Course Project

	Homework - Bugfix
	Pick a Project

	Find a bug

	Use the Source, Luke

	The Deliverable

	An Afterthought (not required)

	HTML5 - Programming Assignment #1
	Deliverable

	Optional - use a framework

	Homework - Rubric

	HTML5 - Programming Assignment #2
	Required technology overview

	Assignment

Syllabus

Projects Seminar in FLOSS Game Development

	Syllabus - http://ritfloss.rtfd.org/ – (subject to change)

	Course Number - 4080.590.01

	Room - Orange Hall, Room 1380 (013-1380)

	Tuesday, Thursday – 10:00am-11:50am

	Instructor - Ralph Bean <rjbpop@rit.edu>

	Office: Building 17, Room 3110 (17-3110)

	Office Hours: Friday, 1:00pm-3:00pm

	IRC - irc.freenode.net, #floss-seminar

	Email list - floss-seminar@lists.rit.edu [https://lists.rit.edu/mailman/listinfo.cgi/floss-seminar]

	Blog Planet - http://threebean.org/floss-planet

	The source for this syllabus can be found at
http://github.com/ralphbean/tos-rit-projects-seminar

Text Books

You can download the textbooks here.

Casual Game Design

Casual Game Design: Designing Play for the Gamer in ALL of Us [http://www.amazon.com/Casual-Game-Design-Designing-Gamer/dp/0123749530].

Making Isometric Social Real-Time Games with HTML5, CSS3, and Javascript

Making Isometric Social Real-Time Games with HTML5, CSS3, and Javascript. [http://www.amazon.com/Making-Isometric-Social-Real-Time-Javascript/dp/1449304753]

Goals of the course

Having taken this course, students should be able to:

	Demonstrate competence with modern FLOSS development tools and conventions
(git, public forges, unit tests, bug trackers, wikis, etc..).

	Demonstrate competence with modern web development technologies (HTML5,
Javascript, CoffeeScript, CSS3, etc..).

	Document their work progress, accomplishments, and pitfalls by way of weekly
blog posts.

	Work with and contribute to existing open source projects.

	Build and manage a new project using open source tools.

	Deploy a web application to the cloud [http://rhcloud.com].

	Have a fun, open-source web-based game for their portfolio and/or to show
off to their friends.

The spirit of the course

While still a course where you will receive a letter grade, the spirit of the
course is intended to be both open and fun. This is a seminar course,
so an experimental approach will be taken.

An open course – students will have access to the ‘document source’ for the
syllabus and grading rubric. While you are reading the syllabus right now,
as a student of the class you have a right to fork the upstream repository [http://github.com/ralphbean/tos-rit-projects-seminar], make modifications,
and submit patches for review. Barring a troll festival, this can create a fun,
dynamic environment in which the course curriculum can develop by the very same
mechanism being taught during the quarter (community-driven).

A fun course – while the primary deliverable for the course is a working
web-based game, we are going to subject the course itself to gamification.
Instead of grading students’ final projects individually, projects will be
pitted against one another through a scheme developed by the students
themselves, called the Final Project Rubric.

For example, one way this could work is through simple accumulation of weighted
point values awarded for the presence of certain features: a game that works in
all modern browsers as well as on mobile devices gets +5 points, a game that
includes a velociraptor gets +3 points, etc…

Licensing

All code developed by students in the course must be licensed (by the student)
under any one of the licenses approved by the open source initiative [http://www.opensource.org/licenses/category].

Your code that you write is your code, with which you can do what you will;
true. However, if you’re unwilling to license code you write for an open source
course with an open source license, you’re in the wrong course.

Schedule

	Week

	Day

	Topic

	Reading

	Assigned

	Due

	1

	1

	Introductions, Syllabus,
Mailman, IRC, git, github

	The Syllabus

	Homework - First Flight

	

	2

	Bugfix deep dive

	The Open Source Way

	Homework - Bugfix

	

	2

	1

	Casual Games: Matching,
Sorting, and Seeking

	Casual - Week 2

	
	Homework - First Flight

	2

	Introduction to HTML5

	Isometric - Week 2

	HTML5 - Programming Assignment #1

	

	3

	1

	Casual Games: Managing,
Hitting, and Chaining

	Casual - Week 3

	
	

	2

	Audio, WebWorkers, and
CoffeeScript

	Isometric - Week 3

	
	

	
	
	Holiday Break

	
	
	

	4

	1

	Pitch Session : Talk about
your game.

	
	
	HTML5 - Programming Assignment #1
Homework - Bugfix

	2

	Paper Prototypes : Lecture
and Build

	
	
	

	5

	1

	Paper Prototypes : (con’t)
Project Decisions

	
	Homework - Rubric

	

	2

	Server choices, Social
APIs, and le Cloud.
(#openshift)

	Isometric - Week 4

	HTML5 - Programming Assignment #2

	

	6

	1

	No class

	
	
	

	2

	Casual Games: Constructing,
Socializing, and Physics

	Casual - Week 4

	
	Homework - Rubric

	7

	1

	Digital Prototype : Build

	
	
	

	2

	Digital Prototype : Play

	
	
	

	8

	1

	Digital Prototype : Report
and Revise

	
	
	HTML5 - Programming Assignment #2

	2

	Guest Lecture

	
	
	

	9

	1

	Digital Prototype : Build

	
	
	

	2

	Digital Prototype : Report
and Revise

	
	
	

	10

	1

	Play Testing/Development

	
	
	

	2

	Play Testing/Development

	
	
	

	11

	?

	Final Presentations

	
	
	

Required Reading

The Syllabus

	You’re reading the syllabus right now. It is posted at
http://ritfloss.rtfd.org/

The Open Source Way

	What they didn’t teach me in college [http://ericholscher.com/blog/2009/nov/10/what-they-didnt-teach-me-college/]

	How to Start Contributing to Open Source Projects [http://maymay.net/blog/2009/02/11/how-to-start-contributing-to-open-source-projects/]

	Understanding Open Source Licensing [http://openacs.org/about/licensing/open-source-licensing]

	Revitalizing Computing Education Through Free and Open Source Software [http://www.cs.trincoll.edu/~ram/pubs/CACM09-Morelli.pdf]

	Why Open Source Misses the Point of Free Software [http://www.gnu.org/philosophy/open-source-misses-the-point.html]

Casual - Week 2

	casual

	chapters 1-6 (139 pages). It’s light reading, trust me.

Isometric - Week 2

	Making Isometric Social Real-Time Games with HTML5, CSS3, and Javascript

	chapters 1-3 (65 pages). This reading is not quite so
light.

Casual - Week 3

	casual

	chapters 7-9 (36 pages)

Isometric - Week 3

	Making Isometric Social Real-Time Games with HTML5, CSS3, and Javascript

	chapter 4 (18 pages)

Casual - Week 4

	casual

	chapters 10-12 (56 pages)

Isometric - Week 4

	Making Isometric Social Real-Time Games with HTML5, CSS3, and Javascript

	chapter 5 (25 pages)

Grading

Assignments are due at midnight of the day they are marked as due.

Late submissions will be deducted 10% per day they are late.

Your final grade for the quarter will be derived from the following weights.

	Component

	Weight

	In-Class Participation

	10%

	FLOSS Dev Practices (Blogging, patching, writing, IRC)

	15%

	Homework Assignments

	10%

	Programming Assignments

	15%

	Paper Prototype

	10%

	Final Project

	40%

Class partitipation is speaking in class, answering questions, etc…

Blog updates – students are required to keep a blog to which they post updates
about their investigations, progress, success, and pitfalls. This blog can be
hosted anywhere, but must be added to the course planet [http://threebean.org/floss-planet/] (there are instructions on how to do this
in Homework - First Flight).

	You must make at least one blog post per week to receive full credit.

	You must participate regularly in the course’s IRC channel: asking and
answering questions.

	You must participate in the course’s mailman list,
floss-seminar@lists.rit.edu [https://lists.rit.edu/mailman/listinfo.cgi/floss-seminar].

	Contributions to the course curriculum, syllabus, and rubric are factored in
here as well.

Blogging is good for you and good for the FLOSS community at large [http://xkcd.com/979/].

The homework assignments are listed in the syllabus. You will be able to
complete some of these in class.

Programming assignments are more in depth, but will amount to two deliverables
derived from one of the course’s two textbooks, Making Isometric Social
Real-Time Games with HTML5, CSS3, and Javascript [http://www.amazon.com/Making-Isometric-Real-Time-JavaScript-ebook/dp/B005KOJ4DK/ref=dp_kinw_strp_1?ie=UTF8&m=AG56TWVU5XWC2].

	There are two assignments:

	
	HTML5 - Programming Assignment #1

	HTML5 - Programming Assignment #2

Students’ paper prototypes are presentations to the rest of the class on their
idea for their game, before a single line of code is written.

These are ‘play sessions’. You will need to bring some playable version of your
game so we can all try it out. For instance, if you’re thinking about a
first-person-shooter, come with a set of rules for playing ‘pointing tag’ and
we’ll all really play it, in person.

	The rest of the students will comment on your prototype. Take notes and:

	
	Use them to improve your design

	Turn in a copy for your grade

Your final project will be the culmination of the quarter’s work and will be
graded according to the Final Project Rubric.

Additionally, graduate students are expected to complete some extra work as described in Grad Student Responsibilities.

Lightning Talks - Extra Credit

Every Tuesday for the first portion of class, any student has the opportunity
to give a lightning talk [http://en.wikipedia.org/wiki/Lightning_Talk] on a
topic of their chosing. Your lightning talk must be less than 5 minutes in
length and must be at least remotely related to the course material.

You will receive +1 extra credit points towards your final grade for every
lightning talk you give. Only the first three lightning talks offered will be
allowed during a given class. Talks will be chosen from among those offered by
students on a FIFO basis.

Notes for Class Sessions

Week 01, Day 1: First Flight

	Introductions

	Covering the Syllabus

	Homework - First Flight

Week 01, Day 2: Guided Bugfix

	Lightning Talks?

	Review last class (Homework - First Flight)

	Review Schedule (When are homeworks due, how are we with the reading
schedule?)

	Guided Deepdive into pandas [http://github.com/wesm/pandas]

	Talk about Homework - Bugfix

Week 02, Day 1: Matching, Sorting, and Seeking

	Graduate student proposals are due

	Homework - First Flight is due. How was it?

	Review http://threebean.org/floss-planet

	Slides - http://prezi.com/1qe6g-pvye_q/floss-games-matching-sorting-and-seeking/

Week 02, Day 2: Introduction to HTML5

	Lightning Talks

	Introduction to HTML5

	The book

	clone from github -
https://github.com/ralphbean/Making-Isometric-Real-time-Games

	examples/ex2-fps-requestAnimationFrame.html

	examples/ex13-isogrid-buildings.html

	examples/ex14-gui.html

	Modernizr.js [http://www.modernizr.com/]

	jQuery [http://jquery.com/]

	spritely [http://spritely.net/]

	Here’s the spritely source code [https://gist.github.com/1447119]

	DuckHunt [https://github.com/ralphbean/DuckHunt-JS]

	Javascript Game Frameworks

	gameQuery - http://gamequery.onaluf.org/

	limeJS - http://badassjs.com/post/3200945950/limejs

	melonJS - http://www.melonjs.org/

	processingJS - http://processingjs.org/

	akihabara - http://www.kesiev.com/akihabara/

	effect - http://www.effectgames.com/effect/

	HTML5 - Programming Assignment #1

Week 03, Day 1: Managing, Hitting, and Chaining

	Managing

	Diner Dash http://www.playfirst.com/game/dinerdash

	Cake Mania http://www.bigfishgames.com/download-games/898/cakemania/index.html

	Insaniquarium http://www.popcap.com/games/insaniquarium/web

	Requires ActiveX

	Chaining

	Revisit,

	Diner Dash

	Insaniquarium

	Tetris

	Scrabble

	Hitting

	Whac-a-mole vs Wii Tennis

Week 03, Day 2

Class was cancelled for the STEM/CSI hackathon!

Week 04, Day 1

	Welcome back from break.

	Homeworks due. How’d it go?

	Game Pitches

	<audio> tags

	WebWorkers

	CoffeeScript

	Online interpreter [http://coffeescript.org/#try:%23%20Assignment%3A%0Anumber%20%20%20%3D%2042%0Aopposite%20%3D%20true%0A%0A%23%20Conditions%3A%0Anumber%20%3D%20-42%20if%20opposite%0A%0A%23%20Functions%3A%0Asquare%20%3D%20(x)%20-%3E%20x%20*%20x%0A%0A%23%20Arrays%3A%0Alist%20%3D%20%5B1%2C%202%2C%203%2C%204%2C%205%5D%0A%0A%23%20Objects%3A%0Amath%20%3D%0A%20%20root%3A%20%20%20Math.sqrt%0A%20%20square%3A%20square%0A%20%20cube%3A%20%20%20(x)%20-%3E%20x%20*%20square%20x%0A%0A%23%20Splats%3A%0Arace%20%3D%20(winner%2C%20runners...)%20-%3E%0A%20%20print%20winner%2C%20runners%0A%0A%23%20Existence%3A%0Aalert%20%22I%20knew%20it!%22%20if%20elvis%3F%0A%0A%23%20Array%20comprehensions%3A%0Acubes%20%3D%20(math.cube%20num%20for%20num%20in%20list)%0A]

	Observations

	Python style whitespacing

	Ruby styled lightweight syntax

	Concise function declarations

	JSLint approved

	Class based inheritance

	Comprehensions!

	Hangman [https://github.com/ralphbean/hangman-coffee]

Week 04, Day 2 - Paper prototypes

	Paper prototypes

Week 05, Day 1 - Settling on projects

	Paper prototypes revisited.

	Decide on top three projects.

	Votes -

	How many per team?

	2 teams of 6

	3 teams of 4

	4 teams of 3

	Which games? Vote on the clipboard site [https://clipboard.rit.edu/take.cfm?sid=77F39FB1].

	Rabenvald - Robocode++

	kaeedo - Eco

	PhilMoc - Haunted House

	JaceTwice - Arrangamajig

	Crystick - Gold Rush

	LakeEffect - Helicopter Race

	trose/decause - FOSS

	Lo-Rin - Dragonfire + Maths

	rossdylan - Pip3z!!1

	Qalthos - Myst

	Chips545 - Moar LaZ0rs

	Homework - Rubric assigned.

Week 05, Day 2 - Openshift

	Revisit last class

	Teams and Homework - Rubric

	Due homeworks

	Homework - Rubric due next Thursday.

	HTML5 - Programming Assignment #2 due the Tuesday after that.

	Class this coming Tuesday will be a working session on HTML5 - Programming Assignment #2.

	Walk through HTML5 - Programming Assignment #2

Week 06, the Valley of the Shadow of Openshift

:(

Week 07, Day 1: TurboGears

Setting up your environment (on typhon.csh.rit.edu):

$ virtualenv ~/myenv
$ source ~/myenv/bin/activate
$ pip install tg.devtools Pylons==1.0 WebOb==1.0.8
$ paster quickstart roflapp

Yes you prefer mako templates
Yes you need authentication

$ cd roflapp

	At present, the current release of TurboGears doesn’t know it, but it needs

	
	Pylons==1.0

	WebOb==1.0.8

$ python setup.py develop
$ paster setup-app development.ini

Since we’re on a shared machine typhon.csh.rit.edu, we’ll need to pick different ports to serve our respective roflapps on. Edit development.ini accordingly.

Once you’ve made your edits, serve your app with:

$ paster serve --reload development.ini

Understanding Modern Web Frameworks

It’s all about MVC – model, view, controller. Modern frameworks separate your code out into these three distinct, yet interdependant chunks.

	model (rolfapp/model/*.py) - contains all the database-related code

	view (roflapp/template/*.mak and roflapp/public/*) - contains all the presentation-related code, html markup, css, javascript, etc.

	controller (roflapp/controllers/*.py) - all the control-logic (or business logic). Who can access what urls? Validation of data? Did you win an iPad?

If you look inside roflapp you’ll see these directories and a few other secondary ones.

	Add roflapp/public/testing123.html and browse to /testing123.html.

	Edit roflapp/templates/index.html and browse to /.

	Edit roflapp/controllers/root.py. Edit the def index(..) method to return a random number. Display it in the template.

	Look at roflapp/model/. Edit roflapp/controllers/root.py to return the number of users.

	Throw an exception.

	Use tg.flash().

Week 07, Day 2: More TurboGears - AJAX - Back to the Cloud - Facebook

	Edit roflapp/controllers/root.py.

1.1) Add one method that JSON returns info about users.
1.2) Add another method that JSON returns {‘success’: True} but adds a new user

	Add roflapp/public/javascript/rofl.javascript.

1.1) Add one function that given JSON, updates the DOM.
1.2) Add one function that queries the /query_users URL.
1.3) Add one function that POSTs to create a random user.
1.4) Add $(document).ready(..) to kick it all off.

Facebook, if we have time

	Look at hanginwit-threebean [http://github.com/ralphbean/hanginwit-threebean/] for the example. In particular, check out auth-fb.coffee.

Week 08, Day 2: Facebook Auth

External docs for Facebook:

	get an appID - https://developers.facebook.com/apps

	general docs on fb auth - http://developers.facebook.com/docs/authentication/

Modifications to your openshift app:

	tg2app/models/stuff.py - https://gist.github.com/1779952

	tg2app/controllers/root.py https://gist.github.com/1779931

	tg2app/templates/waiting.mak - https://gist.github.com/1780020

	tg2app/public/js/waiting.js - https://gist.github.com/1779989

	tg2app/lib/base.py - https://gist.github.com/1780206

	tg2app/templates/master.mak - https://gist.github.com/1780188

	tg2app/public/js/auth-faked.js - https://gist.github.com/1780093

	tg2app/public/js/auth-fb.js - https://gist.github.com/1780065

Week 09, Day 1

Presentations!

Week 09, Day 2: Facebook Graph API

	https://developers.facebook.com/tools/explorer

	http://developers.facebook.com/docs/reference/api/

	http://threebean.org/gitlog.html

Helpful Hints – A list of external resources

git

	git cheat sheet [http://zrusin.blogspot.com/2007/09/git-cheat-sheet.html]

vim

	vim cheat sheet [http://www.viemu.com/vi-vim-cheat-sheet.gif]

README.rst – Tools for teaching the open source projects seminar @ RIT

This is an all-purpose repository for storing some content, but mostly tools for
teaching the open source projects seminar @ RIT.

Future tools could include things like scripts to produce blog/commit/unittest
statistics. This is also a place the syllabus could live, where students could
fork and produce pull requests.

Setting up your environment

Before you can do anything with this (build the documentation or run any of the
scripts) you’ll need to setup and activate a python virtualenv [http://pypi.python.org/pypi/virtualenv]. Run the following at the command
prompt…

On Linux/Mac OS X

$ virtualenv --no-site-packages -p python2 sphinxenv
$ source sphinxenv/bin/activate
$ git clone git@github.com:YOUR_USERNAME/tos-rit-projects-seminar.git
$ cd tos-rit-projects-seminar
$ python setup.py develop

On Windows

At the windows command prompt:

$ virtualenv --no-site-packages -p python2 sphinxenv
$ sphinxenv/Scripts/activate.bat

In msysGit or git-bash:

$ git clone git@github.com:YOUR_USERNAME/tos-rit-projects-seminar.git

Back in the windows command prompt:

$ cd tos-rit-projects-seminar
$ python setup.py develop

Building the “Documentation”

The “documentation” for the course (the syllabus, all the homework assignments,
notes on the lectures) are all kept in the doc/ directory of this
repository. The files all end with the extension .rst which is the file
extension for the reStructuredText [http://sphinx.pocoo.org/rest.html] markup
language. They are all furthermore tied together by the sphinx framework for
building integrated docs.

You might notice that the syllabus, et. al. is hosted on
http://readthedocs.org/. The upstream github repository [http://github.com/ralphbean/tos-rit-projects-seminar] has a hook installed
that automatically triggers a git pull at http://readthedocs.org from
http://github.com. Thus, every time we change the docs here, they are
automatically re-built into HTML for us and posted online. Awesome!

This however means that we should be careful before we push anything to github,
or it will ‘go live’. To be careful, you should rebuild the documentation
locally (on your machine) to check that whatever modifications you made to the
.rst files actually renders into the HTML that you want.

In order to do that, first make sure you have your virtualenv activated.

Being certain of that, in the root directory, simply run:

$ sphinx-build -b html doc html-output

The html documentation will be generated in html-output/. Check
html-output/html/index.html to see if it exists.

Note

If your machine complains that ‘sphinx-build’ is a command that could
not be found, try running “$ python setup.py develop” in the root of the
tos-rit-projects-seminar repository first. That setup.py file contains
information about all other open source projects that are required for
this project, and will automatically install them from
http://pypi.python.org/

Validating the data/students.yaml file

The data/students.yaml file is a structured data file that keeps track of
all the students in the class and metadata about them. Using this file and the
bindings in lib/ritfloss/model/students.py we can build scripts that count
how many lines of code each student modifies each week, or how many
words/blogpost, or whatever we like.

The data format (YAML [http://www.yaml.org/]) can be a little prickly though.
It is whitespace-sensitive, meaning that how many spaces you put before an
entry on each line has an impact on how the data is interpreted. It also means
that tabs and spaces are distinctly different in their meaning. It also means
that editing such a file is easy to mess up.

In order to ensure that you don’t introduce any unparseable errors into the
file, there is a script in lib/ritfloss/model/validate.py that reads in the
file and checks each entry. You should run it after every time you edit
data/students.yaml.

In order to run the validate.py script, make sure you have your
virtualenv activated.

In the root of the cloned source directory, run:

$ python lib/ritfloss/model/validate.py

Homework - First Flight

The purpose of this homework assignment is to introduce students to their first
FLOSS practices. Read it in full, there are a number of graded deliverables.

The due-date is listed in the Syllabus.

Fill out the survey

	Tasks:

	
	Your first task is to fill out the survey located here:
https://clipboard.rit.edu/take.cfm?sid=E958FABE

It’s anonymous, but the results will be published back to the whole class so we
have a feel for the technical level and preferences coming into the course.

IRC

IRC [http://en.wikipedia.org/wiki/Internet_Relay_Chat] is one of the primary
means of communication for a FLOSS [http://en.wikipedia.org/wiki/Free_and_open_source_software] community,
particularly for informal communication.

There is a course IRC channel on irc.freenode.net. The channel is
#floss-seminar. Communicating regularly in IRC factors into the FLOSS
Dev Practices component of your final grade.

	Tasks:

	
	Download and install an IRC client on your development machine.

	Windows: mIRC [http://www.mirc.com/]

	Mac OS X: Colloquy [http://colloquy.info/]

	Linux: irssi [http://irssi.org/]

	Choose a nick and register yourself with the NickServ [http://freenode.net/faq.shtml#userregistration].

	Connect to #floss-seminar on irc.freenode.net and introduce yourself.

	The instructor’s nick is threebean.

It is a good practice to “hang out” in IRC channels of projects that you use and
especially of projects that you contribute to. Here you can find early alerts
regarding any upcoming major changes or security vulnerabilities. It is also
the easiest (lowest overhead) method for getting your questions answered.

Note

Only for the brave – if you want to be completely awesome, you can
setup a proxy node so you are always logged in. People can leave you
messages this way.

If you want to be completely completely awesome, you can setup BitlBee [http://www.bitlbee.org/main.php/news.r.html] so you can tweet from your
IRC client.

Mailman

Discussion mailing lists [http://en.wikipedia.org/wiki/Electronic_mailing_list] are a more formal
mechanism of communication for FLOSS projects. More formal than IRC, less
formal than bug trackers. Discussion mailing lists are often used to ask
questions, announce upcoming releases and beta tests, and to debate redesigns
and refactors. The advantage here is that mailing lists are typically archived
and indexed by Google; discussions that should be preserved for posterity should
occur here.

There is a GNU Mailman [http://en.wikipedia.org/wiki/GNU_Mailman]
discussion list for the course hosted by RIT.

	Tasks:

	
	Subscribe to it at https://lists.rit.edu/mailman/listinfo.cgi/floss-seminar

	Write your first email to floss-seminar@lists.rit.edu, introducing yourself.
Include your name, major, hometown, and favorite color.

Communicating regularly over the course mailman list (asking and/or answering
questions) factors into the FLOSS Dev Practices component of your final grade.

Blogging

Setup a blog if you don’t have one. Much like mailing lists, blogs are
archived, indexed by Google, and therefore preserved for posterity. When you
encounter a technical challenge, typically you google for a solution and you
typically find that solution in a blog post of some developer who has run into
a similar situation. Blogging about your attempts, successes and failures
(and writing tutorials!) is a best practice for increasing the general body of
searchable knowledge available, for increasing the Wisdom of the Ancients [http://xkcd.com/979/].

Blogs around a topic are also typically aggregated by a planet [http://en.wikipedia.org/wiki/Planet_(software)] (an RSS feed aggregator).
This way, all developers blogging about Project X can have their blog posts
fast-tracked to a readership subscribed to Planet X. For instance, here’s a
link to Planet Python [http://planet.python.org/].

The Planet for the course is hosted at http://threebean.org/floss-planet/.
There are instructions for how to subscribe your blog to it in the Patch the
Course Project section below.

You must create a blog (if you don’t have one already) and write at least one
post per week about your progress, attempts, successes, failures, reflections,
and/or all of the above.

	Tasks:

	
	Create a blog if you don’t already have one. There are lots of free services
available. You might try http://wordpress.com or http://blogspot.com.

	Write an introductory post relevant to the course. The topic is your choice!

github

Code forges are service sites around which FLOSS development orbits, some of
the more popular sites are github [http://github.com], bitbucket [http://bitbucket.org], sourceforge [http://sourceforge.net/], and
launchpad [https://launchpad.net/].

For your own enlightenment, review the following comparisons of the different
forges:

	Timeline [http://flossmole.org/content/when-were-forges-established]

	Metadata [http://flossmole.org/content/project-metadata-matrix-june-2011]

	Artifacts [http://flossmole.org/content/artifacts-matrix-code-forges-june-2011]

	Features [http://flossmole.org/content/feature-matrix-code-forges-june-2011]

	Revision control [http://flossmole.org/content/revision-control-matrix-june-2011]

	Policies [http://flossmole.org/content/forge-policy-matrix-june-2011]

You’ll need to create your own account on github.com. All development for this
course should be tracked on that forge. Github is, after all, the most popular
forge [https://github.com/blog/865-github-dominates-the-forges].

	Tasks:

	
	Create a github [http://github.com] account if you don’t already have one.

Patch the Course Project

Check out the source repository for this course; it’s hosted at
https://github.com/ralphbean/tos-rit-projects-seminar.

Inside the repository, we’ll keep an index of all the students in the course and
metadata about them (you!).

	Tasks:

	
	Load up the git cheatsheet listed at Helpful Hints – A list of external resources and keep it
nearby.

	Work through this git tutorial [http://gitimmersion.com/index.html] if you
don’t have any experience with git.

	Fork the repository [https://github.com/ralphbean/tos-rit-projects-seminar] (link to
github help [http://help.github.com/fork-a-repo/] on this).

	Clone a local copy.

	Follow the instructions in README.rst to setup your environment.

	Edit the file data/students.yaml. Perhaps obviously, it is
a YAML [http://www.yaml.org/] file. Add yourself to the file with the
necessary keywords.

	Verify that you added yourself correctly by running the script located at
lib/ritfloss/model/validate.py

	Edit the file planet/config.ini. Look at the very bottom of the file and
there will be the beginnings of a list of subscribed blogs. Add your blog’s
RSS feed (or a topical sub-feed) to this list. Make sure its a working RSS
URL! (Once the patch is accepted upstream and pushed to production, this
should add your blog feed to the course planet [http://threebean.org/floss-planet/].)

	If everything checks out, then

	Commit your change

	Push to your github repository

	Issue a pull request through the web interface.

Homework - Bugfix

Real learning in computing comes more from doing and less from studying.
Debugging, figuring out how some software works and how it doesn’t, is an
interactive process that develops basic engineering practices and, in the open
source context, community engagement and collaboration.

Pick a Project

You can choose any project you like. The best to pick is something you already
use, something with which you’re already familiar. If you can’t think of any
projects to investigate off the top of your head, here’s a list of suggestions.

	The Battle for Wesnoth [http://www.wesnoth.org/]

	js.io [https://github.com/gameclosure/js.io]

	The Linux Kernel (bugzilla is down [http://comments.gmane.org/gmane.linux.kernel/1209650], you could try
looking here [https://bugzilla.redhat.com/enter_bug.cgi?product=Fedora&version=rawhide&component=kernel]

	liveusb-creator [https://fedorahosted.org/liveusb-creator/]

	The Mozilla Project [https://bugzilla.mozilla.org/]

	node.js [http://nodejs.org/]

	pandas [http://github.com/wesm/pandas], a data manipulation library

	Pyramid (web framework) [http://docs.pylonsproject.org/]

	Toscawidgets 2 (web widgets) [http://tw2core.readthedocs.org/en/latest/index.html]

	Turbogears 2 (web framework) [http://turbogears.org/]

	The Ur-Quan Masters [http://sc2.sourceforge.net/]

	The ManaWorld MMORPG for Linux [http://mantis.themanaworld.org/my_view_page.php]

A little more focused, here is a list of open source javascript/html5 game
engines and links to their bug trackers.

	gameQuery [https://github.com/onaluf/gameQuery/issues]

	limeJS [https://github.com/digitalfruit/limejs/issues]

	melonJS [https://github.com/obiot/melonJS/issues]

	akihabara [https://github.com/kesiev/akihabara/issues]

	effect [https://github.com/jhuckaby/Effect-Games/issues]

You might also find something neat over at bounty sites like:

	Gun.io http://gun.io/

Really, the sky is the limit here.

Note

For background, you might want to also check out the project on
http://ohloh.net/. It can help you characterize what kind of community
orbits around your choice.

Find a bug

A bug can be anything: an unintended side-effect in a low-level routine, a
user-interface cleanup, a feature enhancement, grammatical errors or lack of
clarity in the project’s documentation.

Broadly, you have two different options here. You can

	Find a known bug (or feature enhancement) listed in the project’s bug
tracker.

	Find a bug yourself by using the software.

In the event of the second case, make sure you file the bug in the project’s
tracker before proceeding.

OpenHatch.org

OpenHatch.org bills itself as an “Open source Involvement Engine.” It’s mission
is explicitly to reach out to communities of developers just like the one in
this very course, and make it trivial for new contributors to effectively cycle
on upstream projects!

You can read more about OpenHatch and it’s vision here on their wiki [https://openhatch.org/wiki/About_OpenHatch]

For this homework assignment, you should check out:

	OpenHatch [http://openhatch.org], particularly

	The OpenHatch Volunteer Opportunity Finder for Bite-sized Bugs [http://openhatch.org/search/?toughness=bitesize]

	If you want all the bugs, you can find them through OpenHatch’s Search [http://openhatch.org/search]

Use the Source, Luke

Once you’ve identified a bug that needs fixing, you’ll need to get ahold of the
source. In most cases, the code for a project will be hosted on a forge and the
process of forking and cloning the source will be straightforward. If you
forget how to do this for github [http://github.com], you can refer to
Homework - First Flight.

For whatever project you’ve chosen, you should ask that project’s community for
help. Look for IRC channels and project mailing lists. You’ll be
communicating with developers who have a lot on their plate so make sure to be
polite and leave your ego at the door [http://maymay.net/blog/2009/02/11/how-to-start-contributing-to-open-source-projects/].

Find the code related to the bug; use whatever code navigation tools you’re
more familiar with. The instructor’s favorite method is: grep -inr "some
string" project_src/.

Fix the bug, this may require some thinking, and some more asking around.

Test your fix! Project maintainers hate nothing more than receiving a patch
that breaks every other function of the project. Often, projects have built-in
test suites. If yours does, run it!

Prepare your patch with descriptive commit messages. Follow the method for
submitting patches recommended by your project and submit!

Make sure the project community can easily understand what you did and
why you did it.

Make sure there is a reference in the tracked bug ticket to your patch (that is,
if the project maintains a bug tracker).

The Deliverable

Write a blog post about this process and provide relevant links where
possible to documentation.

	A link to the patch(es) hosted somewhere on the web, usually forges provide
the ability to link to changesets.

	A link to any mailing list discussions archived on the web

	Snippets of any relevant IRC conversations.

You will be graded on your post and the explanation of your process. Extra
kudos (but not extra credit) for super epic patches.

An Afterthought (not required)

Once your patch has been accepted, mosey on over to http://ohloh.net.

	Create an account

	Find the project you patched

	If it doesn’t exist, you can add it yourself

	“Claim your position” as the author of the commit(s) you sent in to increase
your rank among open source developers of the world!

HTML5 - Programming Assignment #1

For this assignment you’ll be combining examples 13 and 14 from the book into a
tech demo (still not actually a game).

	Example 13 [https://github.com/ralphbean/Making-Isometric-Real-time-Games/blob/master/examples/ex13-isogrid-buildings.html]

	Example 14 [https://github.com/ralphbean/Making-Isometric-Real-time-Games/blob/master/examples/ex14-gui.html]

While they are both good examples that demonstrate some of the basic features of
the <canvas> element and its 2d context, they suffer from a few deficincies.
Fix these as you rewrite and combine them. Do as you see fit, you’ll be
expanding on these examples for the second homework (HTML5 - Programming Assignment #2), so better to
code well now than suffer through bad code later.

Use FLOSS development practices while working on this. From the start, keep
your code in a git repository linked to github. “Commit early and commit
often.” You’ll need to create a new repository on github for this.

As far as combining the examples goes, your demo will need to feature the
ability to:

	Place and destroy buildings.

As far as fixing up deficiencies, you need to:

	Move all javascript out of the <script> tags and into its own .js
files. Your main page can still have one or two javascript make calls to
initialize your demo.

	Convert the code from a half-procedural/half-object-oriented pattern to be
fully object-oriented. You should have differenet objects here and not just
cram everything into the Game object from example 14.

	Replace the event handling and listening with jQuery [http://jquery.com/].

	Replace the style attribute manipulation on DOM elements outside the
<canvas> element also with jQuery [http://jquery.com/].

	For example, the lines where they set className = null and use
.setAttribute(...) are so five years ago.

Deliverable

Write a blog post explaining what changes you made and why you made them.

Simply include a link to your github repository for proof of your work.

Optional - use a framework

You may, if you like, move ahead and use a javascript game framework instead of
jQuery and the examples from the book. Your project will need to have the same
functionality as if it were composed of the two examples, but this will require
a larger rewrite (although with much cleaner, denser code). Definitely make
note of this in your blogpost if you choose this route.

Here are some examples of frameworks you could use:

	gameQuery - http://gamequery.onaluf.org/

	limeJS - http://badassjs.com/post/3200945950/limejs

	melonJS - http://www.melonjs.org/

	processingJS - http://processingjs.org/

	akihabara - http://www.kesiev.com/akihabara/

	effect - http://www.effectgames.com/effect/

Homework - Rubric

An excerpt from Syllabus:

An open course – students will have access to the ‘document source’ for the
syllabus and grading rubric. While you are reading the syllabus right now,
as a student of the class you have a right to fork the upstream repository [http://github.com/ralphbean/tos-rit-projects-seminar], make modifications,
and submit patches for review. Barring a troll festival, this can create a fun,
dynamic environment in which the course curriculum can develop by the very same
mechanism being taught during the quarter (community-driven).

A fun course – while the primary deliverable for the course is a working
web-based game, we are going to subject the course itself to gamification.
Instead of grading students’ final projects individually, projects will be
pitted against one another through a scheme developed by the students
themselves, called the Final Project Rubric.

Part of the experience of being an open source developer is the instrinsic motivation that drives you to build open software. That motivation can be different for each person. Its not something that is ever taught and is difficult to develop into a course curriculum for sure!

Your assignment here is to take part in creating Final Project Rubric.

You should have divided up into your teams for the final project by this point. Do the following with your github accounts to setup both for the final project and for this homework:

	Designate one person from your team whose github account will be the primary account for your team. The primary designee will be responsible for merging pull requests from their teammates both for the final project and for this homework.

	All other members of your team should:

	Delete their tos-rit-projects-seminar repositories on github.

	Fork the tos-rit-projects-seminar repo from their team’s primary account (the designee’s account).

You will be responsible in this homework for forking your team’s repo as described above, committing patches to the document (Final Project Rubric), pushing to your own github repo and issuing pull requests. You may add to the document as well as delete from it.

Although open source development is typically thought of as a cooperative mode of production, some participants derive their motivation from a competitive outlook towards their peer developers. As an experiment, you will all be graded in competition with one another for this assignment.

	There are 100 possible points.

	The student with the highest impact will receive 100 points.

	All other students who contribute patches will receive a weighted grade
between 100 and 75 points based on their impact.

	Students who submit no patches will receive 0 points.

Your impact is defined as the number of lines added + the number of lines deleted.
You can see a graph of your impact so far
here [https://github.com/ralphbean/tos-rit-projects-seminar/graphs/impact].

Good luck! And make an awesome rubric worthy of awesome projects!

HTML5 - Programming Assignment #2

Required technology overview

	Take a look at openshift rhc tools.

	Create an openshift account.

	Install them using these instructions [https://openshift.redhat.com/app/express#quickstart].

	Follow only steps 1 and 2.

	Take a look at lmacken’s openshift-quickstarter [https://github.com/lmacken/openshift-quickstarter]

	Use it to create your first app.

	Take a look at the Facebook API [http://developers.facebook.com/docs/guides/web/#login].

	Register your site [https://developers.facebook.com/apps/].

	Use the API to auth against your app, get friends lists.

Assignment

For this you’ll be taking your product from HTML5 - Programming Assignment #1, hosting it on the cloud,
and connecting it to Facebook authentication.

Requirements:

	Your app must be hosted on http://YOURAPP-YOURDOMAIN.rhcloud.com

	All client-side code must be written in coffee-script.

	Users must login with their Facebook account.

	Whatever map they work on must be saved to a database.

	Whatever map they were working on must be re-loaded once they login.

Extra Credit

	Share maps with other users on Facebook

Deliverable

	Write a blog post including a link to your game and its source on http://github.com

Index

Final Project Rubric

Gamely Challenges

	Is it fun?

	10 points. Determined by classmates written review.

	Does Melissa (Prof. Bean’s girlfriend) think its fun?

	5 points.

	Does Melissa (Prof. Bean’s girlfriend) think its pretty?

	5 points.

	How polished is it (card turning animation, choice of theme for back of cards, 3D visual representation of card values, etc.)

	5 points.

	Are the rules clearly explained / easily understood?

	10 points.

	Is it balanced?

	10 points.

	Lasting Appeal. Does it remain fun after multiple play throughs? Will players keep coming back? (Also determined by classmates written review.)

	5 points.

	Is it a complete, playable game? Are there any bugs?

	10 points.

	Supports 2 - 4 players?

	5 points.

	Game includes instructions and/or a tutorial?

	5 points.

	Is it Intuitive (easy to learn)

	10 points

	Does it have a polished feel to it?

	10 points

	Does the game include includestructions on how to play? (tutorials, help screens, readme.txt?)

	10 points.

	Does the game give good input feedback? (sound, animation, etc…)

	10 points.

Techly Challenges

	Game includes appropriate sound-effects/music and the ability to alter the game volume as well as to mute the game.

	5 points

	Does it run well on all modern browsers?

	5 points.

	Does it run well on all modern mobile devices?

	5 points.

	Does it use AJAX?

	2 points

	Does it use COMET?

	5 points

	Does it run on PC / MAC?

	5 points.

	Does it use CoffeScript?

	5 points

	Does it use Python?

	5 points

	Is it hosted on OpenShift or a similar PaaS?

	5 points

	Does it hook into Facebook

	2 points

	Game supports various different screen resolutions.

	5 points

STEMly Challenges

	Does it meet criteria for a STEM challenge submission?

	20 points

	Does it meet the criteria for a Sesame games submission?

	20 points

	Does it meet the criteria for a PBS Kids submission?

	20 points

	Does it meet the criteria for a Middle School prize submission?

	20 points

Teamly Challenges

	Is your team awesome? (did they pull their weight?)

	(for 3 person teams) 20 points per awesome team member
(for 4 person teams) 15 points per awesomesome team member
(for 5 person teams) 12 points personr awesome team member

Funly Challenges

	Does it include a Ninja?

	3 points (for how awesome the ninja is).

	Does it include a Pirate?

	3 points (for how awesome the pirate is).

	Does it include a robot?

	3 points (for how awesome the robot is).

	Does it include a wizard?

	3 points (for how awesome the wizard is).

	Does it include a ninja, a pirate, and a robot?

	3 points.

	Does it contain a velociraptor?

	3 points (for how awesome the raptor is).

FOSSly Challenges

	Is your code hosted on an open code forge?

	1 point for each forge.

	Does it include patches from someone outside of the course?

	2 points for each contributor.

	Does your project have a dedicated IRC channel?

	1 point.

	Does your project have a dedicated Mailing List?

	2 points.

	Does your project have a dedicated Web Forum?

	3 points.

	Are commits to the git repository “early and often”?

	2 points

	Does it hook into http://identi.ca?

	5 points

	Is the documentation localized in another common language (e.g. German, Spanish, Russian)

	20 points per language.

Easy ‘A’ Challenges

	Did it place in the STEM challenge?

	100 points

	Did it get a head-nod from Big Bird?

	100 points

	Did it get a head-nod from Cookie Monster?

	100 points

Grad Student Responsibilities

Students registered for this course’s graduate section will be responsible for
two or more of the following deliverables as part of their evaluation in this
course:

	
	Storytelling

	In addition to regular coursework, graduate students may write (2) or
more major articles related to the course and it’s activities over the
course of the quarter. These posts will be no less than 500 words, and
will preferably be posted on other upstream websites.

	
	Hackathons

	Graduate students must not only attend, but also co-organize at least
(2) hackathons per quarter. Hackathons will be at least 8 hours in
length, and will be open to students, and encourage community members
to attend.

	
	Course Support

	Over the duration of the quarter, graduate students may contribute
useful tools, scripts, utilities, or other programs and applications
that assist the professor in gathering data, metrics, and insight about
the students and their course related activities. These tools, like all
code developed in this course, must be released under an OSI approved
license.

	
	Office Hours

	In addition to class time, Graduate Students may hold office hours or
study sessions for students to work together and ask questions. Grad
students will make themselves available during these designated times.
Optionally, the professor may conduct office hours in conjunction with,
or complementary to, graduate student hours.

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Teaching Open Source @ RIT – Projects Seminar

 		
 Syllabus

 		
 Projects Seminar in FLOSS Game Development

 		
 Text Books

 		
 Casual Game Design

 		
 Making Isometric Social Real-Time Games with HTML5, CSS3, and Javascript

 		
 Goals of the course

 		
 The spirit of the course

 		
 Licensing

 		
 Schedule

 		
 Required Reading

 		
 The Syllabus

 		
 The Open Source Way

 		
 Casual - Week 2

 		
 Isometric - Week 2

 		
 Casual - Week 3

 		
 Isometric - Week 3

 		
 Casual - Week 4

 		
 Isometric - Week 4

 		
 Grading

 		
 Lightning Talks - Extra Credit

 		
 Notes for Class Sessions

 		
 Week 01, Day 1: First Flight

 		
 Week 01, Day 2: Guided Bugfix

 		
 Week 02, Day 1: Matching, Sorting, and Seeking

 		
 Week 02, Day 2: Introduction to HTML5

 		
 Week 03, Day 1: Managing, Hitting, and Chaining

 		
 Week 03, Day 2

 		
 Week 04, Day 1

 		
 Week 04, Day 2 - Paper prototypes

 		
 Week 05, Day 1 - Settling on projects

 		
 Week 05, Day 2 - Openshift

 		
 Week 06, the Valley of the Shadow of Openshift

 		
 Week 07, Day 1: TurboGears

 		
 Understanding Modern Web Frameworks

 		
 Week 07, Day 2: More TurboGears - AJAX - Back to the Cloud - Facebook

 		
 Facebook, if we have time

 		
 Week 08, Day 2: Facebook Auth

 		
 Week 09, Day 1

 		
 Week 09, Day 2: Facebook Graph API

 		
 Helpful Hints – A list of external resources

 		
 git

 		
 vim

 		
 README.rst – Tools for teaching the open source projects seminar @ RIT

 		
 Setting up your environment

 		
 On Linux/Mac OS X

 		
 On Windows

 		
 Building the “Documentation”

 		
 Validating the data/students.yaml file

 		
 Homework - First Flight

 		
 Fill out the survey

 		
 IRC

 		
 Mailman

 		
 Blogging

 		
 github

 		
 Patch the Course Project

 		
 Homework - Bugfix

 		
 Pick a Project

 		
 Find a bug

 		
 OpenHatch.org

 		
 Use the Source, Luke

 		
 The Deliverable

 		
 An Afterthought (not required)

 		
 HTML5 - Programming Assignment #1

 		
 Deliverable

 		
 Optional - use a framework

 		
 Homework - Rubric

 		
 HTML5 - Programming Assignment #2

 		
 Required technology overview

 		
 Assignment

